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Parameters for one health genomic
surveillanceofEscherichia coli fromAustralia

Anne E. Watt 1,2,20, Max L. Cummins 3,4,20, Celeste M. Donato2,5,20,
Wytamma Wirth2, Ashleigh F. Porter 2, Patiyan Andersson1,2, Erica Donner6,7,
Australian Pathogen Genomics One Health Working Group*, Amy V. Jennison8,
Torsten Seemann 1,2,5, Steven P. Djordjevic 3,4,21 &
Benjamin P. Howden 1,2,5,9,21

Genomics is a cornerstone of modern pathogen epidemiology yet demon-
strating transmission in aOneHealth context is challenging, as strains circulate
and evolve within and between diverse hosts and environments. To identify
phylogenetic linkages and better define relevant measures of genomic relat-
edness in a One Health context, we collated 5471 Escherichia coli genome
sequences from Australia originating from humans (n = 2996), wild animals
(n = 870), livestock (n = 649), companion animals (n = 375), environmental
sources (n = 292) and food (n = 289) spanning over 36 years. Of the 827 multi-
locus sequence types (STs) identified, 10 STs were commonly associated with
cross-source genomic clusters, including the highly clonal ST131, pandemic
zoonotic lineages such as ST95, and emerging human ExPEC ST1193. Here, we
show that assessing genomic relationships at ≤ 100 SNP threshold enabled
detection of cross-source linkage otherwise obscured when applying typical
outbreak-oriented relatedness thresholds ( ≤ 20 SNPs) and should be con-
sidered in interrogation of One Health genomic datasets.

Understanding the complexity of microbial transmission networks
from a One Health perspective has become a priority because of their
relevance for the study and management of infectious disease and
antimicrobial resistance (AMR)1. The formation of the One Health
High-Level Expert Panel (OHHLEP) in 20212, comprising the Food and
Agriculture Organisation (FAO), the World Organisation for Animal
Health (WOAH), the United Nations Environment Programme (UNEP),

and theWorld Health Organisation (WHO), signals the need for urgent
adoption of One Health principles by public health and research
initiatives.

Escherichia coli, a well-studied member of the Enterobacterales
family, is commonly host-associated while also capable of thriving
in diverse environments including water and soil. It is both a
common commensal and pathogen, responsible for intestinal and
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extraintestinal infections in humans and animals3–7, respectively
referred to as intestinal pathogenic E. coli (IPEC) and extraintestinal
pathogenic E. coli (ExPEC), and a contaminant of agricultural crops and
food products8,9. Reservoirs of such pathogens have been identified
across livestock, wildlife, and the environment10–12. Furthermore, while
the role of environmental E. coli populations in AMR dissemination
requires further exploration, waste processing systems expose E. coli
to pressures that can trigger the uptake of resistance mechanisms13.
The extensive diversity of E. coli, some of which are zoonotic, and their
widespread capacity to share mobile genetic elements that carry AMR
and virulence gene cargo underline the importance of surveillance of
this One Health pathogen.

Over the last decade genomic surveillance has become a common
tool for investigating human pathogens and outbreaks1,14–16, while the
WHO’s Tricycle project is a key example of amultisectoral surveillance
initiative focussed on Extended-Spectrum Beta-Lactamase (ESBL) car-
rying Escherichia coli17. In this regard, development of genomics-
enabled prospective surveillance systems will be an important step in
monitoring the emergence of AMR across sectors. So too will be the
establishment of sophisticated workflows for sampling, genomic
sequencing and bioinformatic analyses to generate fit-for-purpose
microbial genomic surveillance datasets. Currently there is little con-
sensus regarding the approaches required to demonstrate linkages,
direct or otherwise, between members of microbial communities co-
occurring between distinct hosts and environments. Modern
outbreak-related investigations for enteric pathogens increasingly
utilises core-genome multi-locus sequence typing (cgMLST) in com-
bination with single nucleotide polymorphism (SNP)-based
approaches18–22, the former being used to rapidly cluster genomes into
potentially epidemiologically relevant subsets and the latter generally
used for high resolution phylogenetic analysis. However, the utility of
such approaches in analysing large-scale, diverse (including spatial,
temporal, and host/environment diversity) genomic datasets for evi-
dence of potential cross-source linkage is poorly understood.

Here, utilising a large national multi-sectoral genomic dataset, we
explore cgMLST and SNP-based approaches in the identification of
cross-source clusters and potential transmission events in E. coli and
highlight their relevance within a One Health context. Our findings
serve as a model for analysis of datasets for E. coli, and potentially
other Genera, and inform the planning and operation of prospective
bacterial genomic surveillance infrastructure nationally and abroad.

Results
Collection characteristics
In total, 5471 Australian E. coli genomes originating from humans
(n = 2996/5471, 54.76%), wild animals (n = 870/5,471, 15.90%), livestock
(n = 649/5,471, 11.86%), companion animals (n = 375/5471, 6.85%),
environmental sources (n = 292/5471, 5.33%) and food (289/5,471,
5.28%) were analysed. Collection dates ranged from 1986 to 2022, with
98.32% (n = 5379/5471) collected between 2001 and 2022. While most
samples originated from Victoria and New South Wales, the dataset
contains samples from all states and territories (Fig. 1A). Where such
data was available, 76.70% (2298/2996) of human samples were iden-
tified as from clinical sources. In total, 52.60% (n = 1576/2996) of
human samples were sourced from extraintestinal sites, while 32.57%
(n = 976/2,996) originate from intestinal sites, and 14.75% (n = 442/
2,996) lacked the appropriate metadata. Among livestock sourced
samples, 47.92% (n = 311/649) originate from extraintestinal sites,
while 35.43% (n = 230/649) originate from intestinal sites and 16.64%
(n = 108/649) unable to be assigned to either category (Fig. 1B).

Phylogenetics
We identified 8 sensu stricto phylogroups within the collection, the
most frequently identified being B2which comprised 39.76% (n = 2175/
5471) of genomes. Phylogroups A, D and B1 were present at

comparable frequencies; 17.46% [n = 955/5,471], 14.48% [n = 792/5,471]
and 12.81% [n = 701/5,471], respectively. Most B2 (n = 1637/2164;
75.26%) and D (n = 481/803; 60.73%) genomes were from humans.
While 36.23% (n = 346/968) of phylogroup A and 25.39% (n = 178/701)
of phylogroup B1 genomes were from humans, the majority were
sourced from wild animals (A: n = 213/968; B1: n = 213/701), livestock
(A: n = 231/968; B1: n = 84/711) and environmental (A: n = 68/968; B1:
n = 120/711) sources (Fig. 2).

Phylogroups F, E, G and C were less common (Fig. 2). In total, 827
STswere identified. The collectionwas phylogenetically diverse (Fig. 2)
but predominantly comprised of a small number of STs; while we
identified 475 singleton STs, the top thirty STs comprised 61.63%
(n = 3372/5471) of the collection.

Identification of STs implicated in cross-source clusters
Within outbreak settings, direct or indirect transmission can be infer-
red by the concurrence of closely related genomes across different
sources in combination with epidemiologically informative metadata.
While our dataset lacks the latter, the former may provide sufficient
evidence to indicate complex and likely protracted movement of
strains in either direction (or potentially both) that can be further
investigated. We thus sought insight into potential cross-source
genomic clusters observed among the sequence types under analy-
sis. cgMLST was used to determine pairwise allelic distances between
genomes and genomic clusters were defined as two or more genomes
which exhibit an allelic distance of ≤ 40. In total, 3465 isolates (com-
prising 151,994 isolate pairs) were identified as putative clusters; the
remaining 2006 isolates exceeded this distance from any other isolate
in the collection (Fig. 2). Note that clusters in this context does not
indicate outbreak associated clusters.

Isolates within ten sequence types (STs 131, 963, 1193, 95, 69, 80,
117, 457, 648 and 57) comprised 35.60% (n = 1,948/5,471) of the overall
collection (Fig. 2C). Putative cross-source clusters within these
sequence types were investigated further, using pairwise SKA Single
Nucleotide Polymorphism (SNP) analyses (Fig. 3). A preliminary ana-
lysis was used to assess the SNP distance among these STs at which
cross-source clusters were identified (Supplementary Fig. 1). Clusters
were defined as two or more isolates differing by ≤ 100 SNPs. This cut-
off is more conservative than that used to identify putative clusters
( ≤ 40 allelic distance [cgMLST]) but allows for a greater degree of
phylogenetic distance than typical clinically defined SNP distance
thresholds. The tested cluster metrics lacked consensus with incon-
sistent support for the ≤ 100 SNPs cut-off threshold (Supplementary
Fig. 5). However, additional supplementary analysis using an additional
population clustering framework, PopPunk23, supportedour clustering
approach, with all clusters identified using our cgMLST threshold
falling within the same PopPunk clusters (Supplementary Informa-
tion). Of the 92,702 cross-source pairs (pairwise combinations of
1948 strains) analysed, just 2,443/92,702 of pairs (2.65%), comprising
541 strains, exhibited SNP distances ≤ 100 SNPs. The SNP distance
thresholds were further classified as follows: > 75 and ≤ 100 (n = 1014/
92,702; 1.10%; strain count = 474), > 50 and ≤ 75 (n = 1005/92, 702;
1.09%, 329 strains), or > 20 and ≤ 50 (n = 421/89,491; 0.46%;
136 strains). Just three isolate pairs, comprising 5 strains, exhibited SNP
distances ≤ 20 SNPs, comprising less than 0.1% of the phylogenetic
relationships. Utilising a SNP threshold of ≤ 100 rather than ≤ 20
therefore resulted in an 814-fold increase in identification of cross-
source pairs, while still requiring isolates to exhibit a high degree of
phylogenetic similarity.

Within the top 10 STs 158 clusters emerged, each comprising two
ormore isolates differing by ≤ 100 SNPs. Of these, 31 comprised cross-
source clusters which had minimum cluster size of 2, a median of 10
and a maximum of 251 (Table 1). Cluster counts varied greatly by ST
(Table 1); a network analysis of these clusters, stratified by ST, was then
generated to explore the potential interconnectivity of sources (Fig. 4).
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Our analysis revealed ST131 was implicated in 10 cross-source
clusters spanning humans, companion animals, food, livestock, and
wildlife (Table 1). These exhibited a minimum, median and maximum
cluster size of 2, 4 and 251, respectively. Additionally, 47 mono-source

ST131 clusters were identified among companion animals, food, wild-
life and especially humans. Similar trends were also observed with
ST1193, which was found to be associated with a total of 9 clusters, of
which 7 spanned multiple sources and 2 originated from a single

Fig. 1 | Composition of the collection. A Timeline of samples in the dataset by
source and state or territory of origin.BAlluvial diagramvisualising thebroad source
of genomes (left column), species, or type grouping of samples (centre column) and

extraintestinal or intestinal sample isolation (right column). Labels for species or
type have been omitted for groups with less than 10 samples, these include bovine,
food, environmental, soil, marsupial, feline, reptile, caprine and ‘liquid’.
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Fig. 2 | Genomic overview of the collection. A Phylogenetic tree (cgMLST-
derived; see “methods”) visualizing the relatedness of the isolates under investi-
gation. Coloured bars indicate (from innermost to outermost) i) the Australian
State fromwhich a genome originates; ii) Phylogroup association; iii) SourceNiche;
iv) Source Type and v) Sample type (whether Extraintestinal, Intestinal, Other or
Unknown). Tree is midpoint rooted. Metadata is shown on this tree only to

demonstrate its broad associations with phylogenetic structure; data on individual
genomes is available in Supplementary Data 1. B Intersection of phylogroup and
isolate source.CSourceNicheof the top ten sequence types. See legend to the right
of panel A for phylogroup and Source Niche colours associated with panels (B and
C). Note that for panel B, cryptic E. coli phylogroups are omitted.
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source. Among ST1193’s cross-source clusters, minimum, median and
maximum cluster sizes were 20, 68 and 115, respectively. ST963 and
ST457 were identified in a total of 3 cross-source clusters (ST963: 1;
ST457: 2) spanning wild animals and humans (minimum, median and
maximum cluster sizes of: ST963 - 75, 75 and 75; ST457 – 4, 10 and 16,
respectively). ST963 was also found to form 2 mono-source clusters,
while ST457 was found to form 11. Companion animal associated
mono-source clusters were also a feature of networks involving ST131,
ST1193 and ST80. Notably, while ST648 exhibited cross-source linkage
at ≤ 40 allelic distance, high resolution SNP analyses identified no
cross-source genomic clusters at ≤ 100 SNPs.

Four STs, ST117, ST57, ST69, and ST95 featured in poultry-
associated networks, some of which were relatively large (Table 1).
Regarding ST57, one cross-source cluster spanned food, livestock,
and humans, while another spanned food and livestock. ST117 fea-
tured predominantly in poultry-associated mono-source clusters,
though networks spanning humans, companion animals, food, and
livestock were evident. Within ST69, mono-source clusters from
poultry and humans predominated, however, cross-source clusters
spanning wild animals and humans, and humans and food, were also
identified.

We gave particular attention to the cluster network of ST95, i) due
to its role as both a human and avian pathogen24, and ii) as it featured a
large cross-source cluster associatedwith a total of 30 strains, of which
51.6% (n = 16/31) originated from food (poultry meat), 12.9% (n = 4/31)
from livestock (diseased poultry animals) and 35.5% (n = 11/31) from
humans (Fig. 4A; Supplementary Data 1). Within this cluster (C1,
Fig. 4A), themedianSNPdistancewithin isolate pairswas 102 (min = 15;

max = 598), while isolate pairs which were collected from different
sources exhibited a SNP distance ranging from 33 to 598 (median =
104). In addition, three other clusters were identified spanning mul-
tiple sources. The first (C2, Fig. 4A) included 10 isolates, including 2
from food (n = 2/10; 20%) and poultry animals (n = 8/10; 80%), within
which SNP distances between isolates collected frommultiple sources
ranged from 32–53 (median 81). Additionally, Cluster C3 featured 3
isolates from companion animals (canine UTIs) and 7 from humans
(including isolates from UTIs and from intestinal biopsies), among
which multi-source pairs exhibited SNP distances ranging from 58–94
(median=83).We also identified largemono-sourceclusters, including
C4, which featured 30 poultry isolates collected from diseased poultry
animals between 2014 and 2016 with SNP distances ranging from
0–100 (median = 45), as well as C5, which featured 17 human-sourced
isolates collected between 2006 and 2015 with SNP counts ranging
from 9–100 (median = 41.5).

Exploring phylogenetic distance thresholds using cgMLST and
SNP-based approaches
We explored the intersection of cgMLST and SNP-based distance
metrics for the 10 STs most commonly associated with cross-source
clusters (STs 131, 1193, 95, 57, 69, 117, 963, 457, 80 and 648). Due to the
inherent biases within the dataset, wewere unable to robustly quantify
the correlation of these metrics. Nonetheless, in many instances the
metrics correlate and are relatively linear in nature (Supplementary
Fig. 3). Notwithstanding sampling bias, some STs appear to have a
greater or lesser degree of correlation between these metrics (Sup-
plementary Fig. 3).

Fig. 3 | Euler diagram visualising the frequency of SNP distances amongst
multi-source isolate pairs.Area for a given circle is proportional to the number of
pairs at a given threshold. The highest distance detected among the ten STs under
analysis was 11,350; note that SNP distances were computed only for strain pairs

sharing an ST.* - Actual value = 0.03%. Note that large SNP distances (e.g., those
exceeding 1000 SNPs) are less accurate than smaller SNP distances and should only
be used as a guide.
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An allelic distance threshold of ≤ 40 identified many more strain
pairing events than did a SNP distance threshold of ≤ 100 SNPs in
isolation (Supplementary Fig. 4). Isolates infrequently exhibited > 40
allelic distance when SNPs were ≤ 100, suggesting a degree of con-
cordance between these methods. However, when visualising the
relationship between allelic distance and SNP distance, we found that
isolate pairs differing by ≤ 40 alleles differed by as many as 1430 SNPs
(Fig. 5). Similarly, SNP counts ≤ 100 were found in isolate pairs which
exhibited as many as 51 allelic distances (in which instance the isolate
pair exhibited 88 SNPs).

Critically, associations between STs and particular combinations
of hosts and environments based on SNP distances were also observed
when employing cgMLST allelic distance-based approaches (Fig. 5).
For example, STs exhibiting fewer than 100 SNPs exhibited allelic
distances between 2 and 20, though isolate pairs which exhibited a
greater degree of incongruence between SNP distance and allelic dis-
tance were observed; for example, ST131 isolate pairs spanning
humans and wild animals exhibited low SNPs and more inflated allelic
distances, whilst ST963 isolates from these same sources in some cases
exhibited 604 SNPs but an allelic distance of just 4.

Phylodynamic analysis
We sought to apply phylodynamics methodology to explore cross-
source linkage. As temporal data spanned 15 years, sequence types 131,
1193, and 95 were further investigated for suitability for phylodynamic
analysis, however, poor temporal signal suggested this approach was
not appropriate for this dataset. Root-to-tip regression was used to
detect strict clock-like structure in these sequence types which
revealed that all three hadanR2 below0.1 suggesting insufficient clock-
like behaviour with a strict clock model (ST95 R2 = 0.09, ST1193
R2 = 0.02, ST131 R2 =0.0003). STs 131 and 95 showed positive correla-
tions and were further investigated for temporal signal using BETS.
However, the analysis failed to converge to a stationary distribution,
indicating a lack of suitability for phylodynamic analyses.

Discussion
Core-genome- and Kmer-based approaches are complementary
in large scale One Health genomic surveillance
E. coli is the leading cause of death associated with antibiotic
resistance25 and a quintessentialOneHealth pathogen,marking it as an
excellent choice for interrogating complex bacterial transmission
pathways using whole genome sequencing and AMR26. This argument
is strengthened by recent studies demonstrating the existence of
naturalised environmental E. coli populations27, and evidence that
most antimicrobial resistance genes have an environmental origin28.
Despite this, genomic relationships between E. coli across humans,

animals, food, and the environment remain relatively poorly defined,
as do the transmission networks underlying these relationships.

Several studies that have sought to understand bacterial trans-
mission networkswithin aOneHealth context typically have employed
relatedness thresholds that are less conservative than those used in
traditional genomic epidemiological investigations of outbreak
scenarios29,30. There is little consensus onwhat levels of relatedness are
appropriate, partially because of a lack of empirical evidence. Gen-
erating suchevidence is problematicbecauseof substantial knowledge
gaps regarding phylogenetic diversity, and variance in rates of muta-
tion and lateral gene transfer within and between E. coli sequence
types. Additionally, the impact of changing environmental conditions
as E. coli moves between hosts and environments remains poorly
understood, as it relates to these evolutionary processes. These likely
have significant impacts not just on the interpretation of phylogenetic
analyses, but for that of phylodynamic investigations which are parti-
cularly sensitive to noise introduced by various factors, including but
not limited to data associated with large online datasets.

Here we provide novel insight into the intersection of cgMLST-
based and SNP-based (SKA) phylogenetic distance measurements
within a One Health context to guide future research. While both
methodologies are generally in agreement, some isolate pairs appear
less closely related based on cgMLST analysis compared with SNP-
based analyses suggest and vice versa. This disparity is likely due to the
presence of distinct mobile genetic elements between isolate pairs;
note that phylogenomic distance using SKA-based methods is per-
formed on a pairwise basis, unlike that of most traditional SNP-based
approaches defining a core using pangenome- or reference-based
alignments.

We likely underestimate the frequency of cross-source genomic
clusters using a SKA-based approach due to the inclusion of SNPs
associated with accessory genome content. Future SKA-based meth-
odologies may benefit from removal of sequence data attributed to
accessory elements which are likely to inflate SKA-derived SNP values
and potentially mask the otherwise close core-genome similarity of
genomes under study. It is likely that F plasmids in our study may
inflate these SNP values. We recently demonstrated that upwards of
78.6% of a cohort of 34,176 E. coli genomes carry an F plasmid repre-
senting 1161 plasmid MLSTs24. F plasmids are therefore highly phylo-
genetically diverse and a source of potential SNPs when utilising a
method which doesn’t mask or omit plasmid sequences. Indeed, pre-
liminary plasmid analyses revealed that at least 76.53% (n = 4187/5471)
of isolates under analysis carried F-plasmid replicons (Supplementary
Data 1). Future studies into Fplasmidswithin aOneHealth context, and
their cross-source and mono-source dissemination, may prove
insightful in identifying plasmid lineageswhich play critical roles in the

Table 1 | Summary of genomic clusters in SNP-based network analysis

ST Count
of ST

Count of Clustered
Genomes

Count of
Clusters

Mono Sectoral
Clusters

Cross Sectoral
Clusters

Minimum Cross-
Source Cluster Size

Median Cross-
Source Clus-
ter Size

Maximum Cross-
Source Cluster Size

131 841 610 57 47 10 2 4.0 251

95 247 150 23 18 5 2 10.0 31

1193 201 153 9 7 2 20 68 115

69 170 73 19 16 3 3 3.0 6

117 132 89 17 13 4 2 2.5 16

648 113 17 8 8 0 NA NA NA

963 87 80 2 1 1 75 75.0 75

457 69 46 11 9 2 4 10.0 16

57 59 43 8 6 2 10 12.5 15

80 29 19 4 2 2 2 6.5 11

Article https://doi.org/10.1038/s41467-024-55103-2

Nature Communications |           (2025) 16:17 6

www.nature.com/naturecommunications


Fig. 4 | Network analyses for STs commonly associated with multi-sectoral
clusters representing their intra-source and inter-source dissemination.
Genomic clusters include two or more instances of genomes which have a pairwise
SNP distance of ≤ 100 SNPs and are coloured by source. A. Highlights ST95, a
common pathogen of humans and poultry. Examples of multi-source and mono-

source clusters are highlighted in yellow. B–J Display the networks for other STs
commonly identified in the dataset with multi-sectoral clusters. SNP distances for
clusters is available in Supplementary Data 2. (https://github.com/maxlcummins/
APG-OHEC-Retro-M1/blob/v1.0.1/Supplementary_Material/Supplementary_Table_
2.txt).
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Fig. 5 | Phylogenetic distance by across sources and sequence types. This series
of box plots compare the phylogenetic distances of isolate pairs (the unit under
study). STs for a given pair are shown on the y-axis, SNP distances are shown on the
x-axis and the colour of a data point representing a pair of isolates indicates the
cgMLST distance for that pair. Counts of strain pairs for given combinations of STs
and pairs of sources are available in Supplementary Data 3. Central lines within

boxplots represents the mean, while the bounds of the box indicate the first and
third quartiles (25th and 75th percentiles). Whiskers extend to the minimum and
maximumvalues. A red dotted line at 100 SNPs indicates a threshold of relatedness
used to indicate moderate phylogenetic overlap. Panels visualise these parameters
for pairs of isolates from the denoted pairs of sources – only isolate pairs from
different sources are shown.
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evolution of virulence and resistance in E. coli and other
Enterobacterales.

A limitationof our study is that the locationof SNPs amongclosely
related genomes is indeterminate. Identifying the location of these
mutations (i.e., as being intergenic or intragenic as well as chromoso-
mal or MGE-associated) may provide insight into the mechanisms of
host adaptation used by E. coli to allow its rapid colonisation (and
infection) of a diverse range of hosts. Itmay also be possible to identify
SNPs (or SNP combinations) with predictive power for source attri-
bution, potentially through the use of machine learning, however this
is a research area in its infancy31.

Additionally, due to our approach comparing SNP distances of
strains which share a ST, it is likely that we underestimate the fre-
quency of cross-source genomic clusters through omission of genome
pairs whichmay differ by as few as one SNP which has occurred within
one of the MLST-defining loci. However, without inferring direction-
ality, our phylogenomic analyses suggest that strains that differ by
50–100 SNPs are occasionally distributed among diverse hosts or over
significant geographic distances, reflecting dissemination pathways
thatmaybe complex andpoorlyunderstood. Knowledgegaps and lack
of suitable analytical methodologies for SNP analyses within One
Health contexts, as opposed to traditional epidemiological settings,
also limit cross-study comparisons. Additional studies are therefore
needed to address these gaps in the literature.

Subsequent research exploring phylogenetic distance thresholds
within a One Health context should utilise datasets with rigorous
sampling methodologies, particularly with genomes from isolates
collected from diverse hosts and environments sampled within a fixed
geographical and temporal window. We performed a supplementary
analysis on a subset of genomes fromafive-yearwindowwithin a single
Australian State seeking to identify potential genome pairs whichmay
have been involved inmore directmovements between sources due to
their more proximal time and area of sampling (See Supplementary
Information). While we identified genomic clusters within this period
which differ by ≤ 100 SNPs both within and across sources across
multiple sequence types, our sampling depth for any combination of
region and sampling window was relatively low.

Snapshot studies focusing sampling efforts on a specific region
and time-period would likely provide deeper insight into the relative
frequency of cross-source transmission events than we are able to
provide with this dataset. To demonstrate this, we also analysed a
previously published cohort of 1338 E. coli genomes from Nairobi,
Kenya (Supplementary Information) which features genomes from
isolates collected from humans and their co-residing household live-
stock as well as rich epidemiologically useful metadata. Within this
dataset, we identified clusters of genomes across a diversity of
sequence types, which were collected from the same households. Our
analysis (and that of the authors) suggests these clusters may be evi-
dence of within-household transmission events.

Future studies should also contrast results fromcgMLST and SKA-
based approaches with additional reference-based, pangenome-based
methods and other high resolution phylogenomic analyses such as
wgMLST. We opted for SKA and cgMLST-based approaches due to
their scalability and reference-independence. Pangenomic-based ana-
lysis methods are highly computationally intensive for large sample
sets, while reference-based approaches (e.g., snippy) are influenced by
reference bias, and depending on the degree of intra ST diversity,
require additional bioinformatic analyses to identify appropriate
referencegenomes29. Thesemethodological considerations are critical
for scalable genomic surveillance utilising large datasets. In addition,
phylogenetic methods which require distance recalculation for the
entire cohort upon addition of new genomes are inherently incom-
patible for large scale analyses. Different STs will also exhibit a greater
or lesser degree of correlation between combinations of cgMLST-
based, SKA-based, and potentially other phylogenetic methods. For

example, variation ingenomediversity and recombination rateswithin
sequence types likely results in cgMLST and SNP distances being dif-
ferentially impacted by acquisition of accessory gene content, com-
plicating comparisons of these methodologies. Distance thresholds
may therefore need to be fine-tuned in a sequence type-specific
manner.

Global pandemic ExPEC sequence types shuttle between
humans, animals, food and the environment
Utilising 5471 Australian E. coli genomes from humans, animals, food,
and the environment spanning 36 years, we have identified E. coli
clusters spanning every source analysed, including humans, food,
companion animals, livestock, wildlife and the environment. Sequence
types 131, 963, 1193, 95, 69, 80, 117, 457, 648 and 57 were most fre-
quently associated with cross-source clusters, potentially implicating
lineages residing within these sequence types in cross-source trans-
mission. However, it is critical to note that this transmission has likely
taken place across unknown periods of time via an indeterminable
number of intermediate hosts and vectors. Nonetheless, this data
highlights the need for a deeper understanding of: i) relevance of these
STs to One Health stakeholders (for example, their zoonotic potential
and/or capacity to colonise and persist on food products and man-
made surfaces); ii) their carriage of resistance and virulence loci, and
the mobile genetic elements that harbour these traits; iii) intra-ST
diversity, and; iv) the genomic (and potentially epigenomic) under-
pinnings of emerging and pandemic STs.

Understanding transmission networks of zoonoses remains a key
motivator for One Health genomic surveillance. It is notable thatmany
of the genomic clusters we identified are comprised of pandemic
human ExPEC STs32, including globally disseminated STs with reser-
voirs in companion animals33–35 andpoultry (Avian Pathogenic E. coli)36.
While human ExPEC are overrepresented in our dataset, and thus
closely related strains of major ExPEC lineages are more likely to be
identified across sectors, our observations highlight the potential
transmission networks whichmay facilitate their dissemination (Fig. 4)
and earmark them for ongoing scrutiny, despite SNP distances within
these genomic clusters not being indicative of these being instances of
clusters of an outbreak like transmission event. While characterisation
of several of these STs has been performed in Australia and
abroad24,37–40, substantial knowledge gaps remain. Several sequence
types that were identified in our study, such as in ST69, ST117, and
especially ST95, are globally disseminated pandemic avian pathogenic
E. coli lineages that are increasingly implicated in human extra-
intestinal infections24,32,39. Our observations suggest that a better
understanding of the potential transmission of E. coli from all aspects
of poultry production (meat and manure) is needed. In addition,
protocols are needed to ensure production and application of micro-
bially safe poultry manures for food crop production41 and use of raw
poultry as feed for companion animals. Further, our findings reinforce
the need for strict biosecurity in the food production sector to mini-
mise instances of zooanthroponosis (‘reverse zoonotic’ disease
transmission).

Similarly, transmission of E. coli isolates between humans and
their companion animals (particularly dogs) has been observed in
multiple STs, including ST9542–45. Clonal isolates of ST131 have also
been reportedly isolated from humans and canines in Europe46. We
also reported previously phylogenetic overlap between isolates of
ST131 from humans, canines, wastewater and wild birds which ranged
between 37 and 76 SNPs; a trend echoed further in the present
dataset47. Studies suggest municipal waste and sewage treatment sites
visited bywildlife are likely to be important for themovement of ST131
and other E. coli STs, as well as other Enterobacterales38,40,47,48. We
frequently identified genomic clusters of isolates spanning humans
and wild animals, particularly wild bird species. Deeper and broader
sampling efforts are needed to examine the full extent by which
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wildlife and waste streams may enable dissemination of AMR and
emerging and pandemic pathogens.

By utilising a relatively high threshold for genomic clusters (100
SNP) we account for protracted transmission pathways potentially
involving multiple vectors and reservoirs that would expose E. coli to
diverse selection pressures49–51, impacting baseline mutation rates51

and promoting genetic rearrangements of AMR associated loci52. Most
studies on E. colimutation rates haveoccurred in laboratory settings or
single hosts53 and little is known about the impact of diverse selection
pressures and transmission across different matrices and lifestyles.
Less conservative phylogenetic distance thresholds are therefore jus-
tified to gain an understanding of the movement of E. coli across sec-
tors and the source combinations and sequence types associated with
such movement. Standard clustering metrics were not useful for
selecting an appropriate SNP threshold (Supplementary Fig. 5);
therefore, we encourage further research on the development and
validation of cluster quality indicators that are more suitable for
evaluating heterogeneous One Health datasets, such as in the
present study.

Herewehave collectedoneof the largest E. colidatasets, however,
due to the opportunistic sampling and limited metadata associated
with this study, our results should be interpreted with the following
considerations. Critically, while the current dataset can be used to
identify genomic clusters it cannot be used to determine categorically
identify transmission events, nor provide insight into the directionality
of movement between different sources. Additionally, diverse sam-
pling regimes were utilised across the more than 66 studies from
which genomes were aggregated and some sequence types are over-
sampled. Due to these, and other factors, STs (e.g., ST131) carrying
clinically important antibiotic resistance genes predominate in our
collection. While we opted not to present AMR-associations in the
present work, this predisposition will bias the phylogenetic structure
of the cohortbeing analysed. Similarly, due to theopportunistic nature
of the dataset, there are limited spaciotemporal overlaps, potentially
reducing the probability of detecting cross-source transmission
events. Finally, within the different sectors sampled, particularly live-
stock and food, sample diversity is restricted, generally being derived
from one or two main animal host types (swine and poultry). Despite
these limitations, there are valuable signals in a dataset of this size, the
use of which is critical for informing the development of future sur-
veillance efforts. Of significance, and despite this sampling bias, we
found many mono-source and cross-source clusters across a breadth
of STs, shedding light on potential transmission networks.

Future genomic surveillance efforts require rigorous sampling
methodologies so that they can provide a basis for a deeper under-
standing of gold-standardphylogenomicmethodswithin aOneHealth
context. Prospective studies should provide greater insight regarding
interhost and mono-source clustering, robustly highlighting mono-
source transmission dynamics, such as on-farm disease outbreaks,
those in humans in clinical and community settings, or potentially
provide evidence of on-farm incursion events of bacterial isolates from
wildlife. Phylodynamic methods may be useful in this regard, but they
require datasets with large spatiotemporal range; and accumulation of
genomic surveillance data over a period of a decade or more at a
national scale which may enable identification of incursion events and
instances of cross-species transfer in bacterial species as has been
demonstrated in viral pathogens such as for canine influenza in the
United States54.

Despite inherent sample bias, genomic clusters of closely related
E. coli from livestock, food, humans, companion animals and/or wild
animals were readily identified, providing evidence of within-host, and
cross-source transmission events. Cross-source genomic clusters
included pandemic zoonotic ExPEC STs, including ST131, ST95, ST69,
ST117 and ST1193. Our findings emphasise the value of adopting One
Health approaches to understand bacterial transmission pathways and

pathogen evolution and build towards pathogen genomic surveillance
and biosecurity systems in Australia and globally.

Methods
Genome collation
We collated all available Australian E. coli genomes from in-house
collections spanning human, companion animal, livestock, food and
environmental sources from the Microbiological Diagnostic Unit
Public Health Laboratory (MDU PHL) in Victoria and the Australian
Centre for Genomic Epidemiological Microbiology (AusGEM) in New
South Wales. The MDU PHL E. coli collection includes isolates referred
by diagnostic laboratories for different purposes, including suspected
carbapenemase-producing E. coli (referred for public health purposes
under the Public Health and Wellbeing Act 2008, Victoria), clinical
isolates submitted for extended antimicrobial susceptibility testing,
and E. coli isolates derived from primary samples, including environ-
mental and food isolates. All E. coli isolates in the collection with suc-
cessful genomic sequencing (meeting quality control criteria) were
included in this dataset under the University of Melbourne ethics
approval (Human Research Ethics Committee Reference number:
1954615). Additionally, isolates from the ‘Controlling Superbugs’ study
were also included in this collection (MelbourneHealthHREC approval
2013.245). The Australian Centre for Genomic Epidemiological
Microbiology (AusGEM) contributed strains sourced from diseased
humans55–57, diseased poultry58,59, and companion animals33 as well as
healthy swine60,61 and wild birds38,62. Collection of samples utilised in
individual research projects was approved by respective ethics panels
across collaborating institutions where required (Sydney Local Health
District CRGHHuman Research Ethics committee [CH62/6/2016-093 –
P Chowdhury LNR/16/CRGH/120]; Elisabeth Macarthur Agricultural
Institute under the Animal Ethics Committee number [M16/04]; Uni-
versity of New South Wales Animal Care and Ethics Committee
[SL101452 14/148 A]). Pathogenic E. coli isolates were collected from a
breadth of sample types including faecal, urinary and blood specimens
from human and animal patients presenting with suspected bacterial
infections. In the case of isolates from healthy animal hosts, isolation
was from faecal samples and cloacal swabs. As our intention was to
collate all available Australian E. coli genomes, selection criteria varied
between collections aggregated; see individual studies for more
detailed sample collection and processing methodology. We also
sourced publicly available genome sequences fromEnterobase63 and a
2020 study by Touchon et al.64, the latter of which was selected due to
its publication of a large number of genomes that fit the study criteria.
Bioproject accessions for internal collections, as well as metadata and
accession numbers for all genomes under analysis, are available for all
genomes in Supplementary Data 1. Genomes were required to have
metadata detailing year, country, and source of isolation for inclusion.

Companion scripts
Genomic data was analysed using a custom Snakemake55 pipeline
available at https://www.github.com/maxlcummins/pipelord in all
steps except for cgMLST and phylodynamic workflows (described
below). Scripts used in the processing and visualisation of data are
publicly available on Github (https://github.com/maxlcummins/APG-
OHEC-Retro-M1). Default parameters were used unless otherwise
stated.

Genome pre-processing
Read sets were filtered and trimmedusing fastp v0.20.1 and assembled
using Spades56 v3.14 via shovill (www.github.com/tseeman/shovill)
v1.0.4. Quality control ensured genomes exhibited: i) a length of
between 3,800,000 and 6,615,000bases using assembly-stats (https://
github.com/sanger-pathogens/assembly-stats); ii) a known or novel
multi-locus sequence type (MLST) of E. coli (Achtman scheme) (www.
github.com/tseeman/mlst, v2.19.0); iii) 50% of sequence reads
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mapping to E. coli using Kraken257 v2.1.2 (parameter: ‘--db bacteria’)
and Bracken58 v2.5; iv) less than 10% contamination and greater than
90% completeness scores using CheckM59 v1.2.0. Isolates were also
required to have 95% of 2,513 cgMLST alleles present to be considered
for further analysis.

Phylogenetic analysis
Core-genome multilocus sequence types (cgMLSTs) were generated
using chewBBACA60 v2.8.5 (cgMLST schema https://enterobase.
warwick.ac.uk/schemes/Escherichia.cgMLSTv1 - accessed 19/07/2022)
via the wrapper Coreugate (https://github.com/MDU-PHL/Coreugate)
v2.0.5, the latter generated pairwise allelic distances and a phyloge-
netic tree using rapidNJ61 v2.3.3 using default settings. When ≥ 2 iso-
lates exhibited an allelic distance ≤ 40, they were considered putative
genomic clusters. Consensus on appropriate thresholds for One
Health microbial genomic epidemiology are lacking, however a
threshold of ≤ 100 allelic distances has been used for preliminary
clustering in other research exploring One Health transmission
events26. We opted for a more conservative threshold of ≤ 40 to
minimise high-resolution comparison of genomes differing by large
numbers of SNPs. Due to the volume of genomic data under analysis,
this preliminary screening step reduced the need for an “all vs all”,
high-resolution phylogenetic analysis, allowing us to focus our efforts
(and computational processing power) on a subset of genomes of
interest. We also performed an additional preliminary clustering ana-
lysis using PopPunk23 v2.67 using default settings and the v2 E. coli
database (available at https://ftp.ebi.ac.uk/pub/databases/pp_dbs/
escherichia_coli_v2_full.tar.bz2).

Subsequent, high-resolution phylogenetic analyses on a subset of
10 STsmost commonly associatedwith putative genomic clusters, on a
ST-wise basis, was performed using Split Kmer Analysis (SKA)62 v1.0,
with two ormore strains differing by ≤ 100 SNPs considered a genomic
cluster and any individual two strains meeting this criteria being clas-
sified as a clustering pair. This threshold was chosen after a thorough
search of the literature; few studies have assessed one health trans-
mission as opposed to direct transmission, and there was little con-
cordance in examining cross sectoral relationships within E. coli.
Thresholds ranged from 15 to 100 SNPswith clonality considered up to
200+ SNPs63–67. As the aim of this study was to examine One Health
genomic clusters and not direct transmission, a threshold of ≤ 100
SNPs was chosen.

A core-genome alignment was generated for ST131, ST1193 and
ST95 using snippy68 v4.4.3 and a maximum-likelihood tree was built
using IQ-Tree69 v2.0.3 (parameters: ‘-m GTR + F -bb 1000’). These
sequence types were selected for analysis given their relatively high
frequency and implication with cross-source genomic clusters. Core
genomic alignments for the three sequence types (STs) were assessed,
in combination with their collection years, for temporal structure (i.e.,
clock-like mutation rates) using both TempEst70 v1.5.3 and Bayesian
Evaluation of Temporal Signal (BETS)71. Phylogroups were assigned
using Clermontyper72 v2.0.3.

Statistical analysis and visualisation
Statistical analyses were performed using R version 4.0.2. Packages
utilised for statistical analysis and general processing and visualisa-
tion in R include: igraph v2.0.373, tidyverse74 v2.0.0, ggplot275 v3.4.4,
ggrepel76 v0.9.3, ggalluvial77 v0.12.5, ggvenn78 v0.1.10, plotly79 v4.10.2,
caret80 v6.0-94, pheatmap81 v1.0.12, circlize82 v0.4.15, and scales83

v1.3.0. Non-parametric correlation analyses for SNP and cgMLST
distances were performed using the SpearmanCorrelation coefficient
via ggpubr84 v0.6.0. Cluster metrics, including Silhouette, Calinski-
Harabasz, Davies-Bouldin, Within-Cluster Sum of Squares, Cohesion,
and Separation, were used to analyse SNP cutoff thresholds. The
analysis was performed in Python version 3.10.12 using sklearn85

v1.2.2, scipy86 v1.11.4, and networkx87 v3.3. The change in each cluster

metric due to different cut-off thresholds was statistically assessed
using a permutation test with 1000 iterations.

Ethics
Ethical approval was received from the Royal Melbourne
HospitalHumanResearchEthicsCommittee (studynumberRMH83761).
All authors verify the integrity and completeness of data and analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Metadata and accession numbers are available for all genomes in
Supplementary Data 1.

Code availability
Scripts used in the processing and visualisation of data are publicly
available on Github88 (https://github.com/maxlcummins/APG-OHEC-
Retro-M1), as are pipelines used for genomic analysis89 (https://github.
com/maxlcummins/pipelord).
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